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Noether 's  first theorem tells us that the global symmetry group Gr of an action 
integral is a Lie group of point transformations that acts on the Cartesian 
product of the space-time manifold with the space of states and their derivatives. 
Gauge theory constructs are thus required for symmetry groups that act indis- 
criminately on the independent and dependent variables where the group struc- 
ture can not necessarily be realized as a subgroup of the general linear group. 
Noting that the Lie algebra of a general symmetry group G r can be realized as a 
Lie algebra gr of Lie derivatives on an appropriately structured manifold, 
G,-covariant derivatives are introduced through study of connection 1-forms that 
take their values in the Lie algebra gr of Lie derivatives (operator-valued 
connections). This leads to a general theory of operator-valued curvature 2-forms 
and to the important special class of Lie connections. The latter are naturally 
associated with the minimal replacement and minimal coupling constructs of 
gauge theory when the symmetry group G~ is allowed to act locally. Lie 
connections give rise to the gauge fields that compensate for the local action of 
Gr in a natural way. All governing field equations and their integrability 
conditions are derived for an arbitrary finite dimensional Lie group of symme- 
tries. The case where G~ contains the ten-parameter Poincar~ group on a flat 
space-time M 4 is considered. The Lorentz structure of M 4 is shown to give a 
pseudo-Riemannian structure of signature 2 under the minimal replacement 
associated with the Lie connection of the local action of the Poincar6 group. 
Field equations for the matter fields and the gauge fields are given for any system 
of matter fields whose action integral is invariant under the global action of the 
Poincar~ group. 

1. I N T R O D U C T I O N  

T h e  c l a s s i c  t h e o r y  o f  g a u g e  f i e l d s  ( Y a n g ,  1975;  D r e c h l e r  a n d  M a y e r ,  

1977 ;  A c t o r ,  1979)  is n o w  r e c o g n i z e d  a s  a n  e s s e n t i a l  c o m p o n e n t  in  t h e  
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conceptual containment of physical phenomena. It begins with the recogni- 
tion of a global internal symmetry group of the salient physical state 
variables. This recognition is achieved by observing that the group in 
question leaves the action integral of the physical system invariant. Usually, 
although not invariably, the state space of the physical system is a represen- 
tation space for the internal symmetry group, so the group action is linear. 
Next, the symmetry group is allowed to act locally; that is, different 
elements of the group act on the state variables at different points in 
space-time. Once local action of the group is allowed, the action integral 
ceases to be invariant. Restoration of invariance of the action integral is 
achieved by the Yang-Mills minimal replacement construct. This construct 
replaces ordinary partial derivatives by gauge-covariant derivatives, where 
the associated connection forms take their values in the matrix Lie algebra 
of the original linear symmetry group and compensate for the local action of 
the group. 

There are two aspects of this construct that appear unduly restrictive. 
First, the group of symmetries of the action integral of a given physical 
system is usually much richer than just a linear internal symmetry group. It 
can be calculated without difficulty and its general properties are well 
known from the pioneering work of E. Noether (1918). In particular, the 
group action can occur on both the physical state variables and the 
space-time labels, and the group action need not be linear. All that is 
required is that all quantities have well-defined Lie derivatives with respect 
to vector fields on an appropriately structured space. The symmetry group is 
then obtained by exponentiation of a Lie algebra of Lie derivatives. 

This brings us to the second aspect. The classic Yang-Mills minimal 
replacement construct introduces connection forms that take their values in 
the matrix Lie algebra of the linear internal symmetry group, while the 
general situation involves a group that is the exponentiation of a Lie algebra 
of Lie derivatives. It is then almost self-evident that the general case should 
involve connection forms that take their values in a Lie algebra of Lie 
derivatives; that is, we have to be able to deal with operator-valued 
connections. This aspect of the problem is dealt with in Sections 2-5. The 
problem is first analyzed in a general context and includes a full account of 
operator-valued curvature forms. Lie connections are then introduced for 
the express purpose of providing a simple and direct approach to gauge 
theory. 

Sections 6-9 obtain a gauge theory for any group that is an invariance 
group for an action integral. The general case is first analyzed, including a 
derivation of all relevant field equations. Application is then made to 
situations in which the action integral is invariant under the Poincar~ group. 
The ease with which gauging by the Poincar6 group is effected is a simple 
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and efficacious test of the general theory. The details of this construct give a 
possibly more direct and fundamental basis for many of the practices in the 
current literature (Kikkawa et al., 1983). 

The paper concludes with several observations concerning important 
extensions and implications. 

2. BASE SPACE, KINEMATIC SPACE, AND LIE GROUPS OF 
POINT TRANSFORMATIONS 

The base space, or manifold of independent variables, is an n-dimen- 
sional differentiable manifold M,, with local coordinates {xql ~< i ~< n }. In 
practice, n - 4  and M,, will be a flat space-time manifold. The volume 
element of M,, is denoted by 

/~, = d X  1 A dx 2 A ' ' '  A d X "  (1) 

Since { 0 i ,= O/Oxill ~ i ~< n} forms a natural basis for T(M,,), the quanti- 
ties 

P'i = 0 i J P ' ,  1 ~< i ~< n (2) 

are well defined. They form a conjugate basis for N'-~(M,,)  with the 
properties (Edelen, 1980) 

d~i = O, dx i A/x# = 8j/~ (3) 

There will be a number of different spaces involved in this discussion. 
For simplicity, T ( W )  will be used to denote the tangent space of W and 
A(W)  denotes the exterior algebra of differential forms over W. If S = R x 
T, then A ( R )  and A(T)  will denote the exterior algebras of differential 
forms over R and T, respectively. If 7r t and ~'2 are the projections onto the 
first and second factors, respectively, ~q : R x T ~ R, ~r 2 : R Z T ~ i/', then 
A(R)  and A(T)  trivially lift to subspaces (~q)*A(R) and (Trz)*A(T) of 
A ( R  x T), respectively. 

Suppose that we are given a system of N quantities on M,,. In practice, 
these will be the state variables of a dynamical system on space-time. For 
the purposes Of this discussion, let • N be the range space of the given N 
quantities. The space K is defined by 

K = M , , X R  N (4) 

[see Edelen (1980) for this construction] and will be referred to as kinematic 
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space. In order to simplify matters, we assume that K is referred to a system 
of local coordinates (zA[1 ~ A ~< n + N } for the time being. The general 
discussion will be carried out in this context. Only later, after identifying the 
state variables, will it be necessary to identify some of the z A's with the x i 's. 

Let Gr be a given r-parameter Lie group and let gr be its Lie algebra. 
We assume that G r acts on K as an r-parameter Lie group of point 
transformations, 

'z A =exp(u"V~)z  A (5) 

where (uOll~< a ~< r} is a system of canonical parameters for G~ and 
{ V~ ~ T(K)I1 ~< a ~< r} is a basis for g~ in this representation. We thus have 

[V,,, Vh] = C,~,V~ (6) 

where C~h are the structure constants of G~. 
Since V, ~ T(K) ,  each V~ acts on the collection of C ~ functions A~ 

by 

V,,: A~  --, A ~  = V~f 

The Lie algebra g~ may thus be realized in terms of the mappings 
V,: A~ ---, A~ We denote this situation by gr(V,,; A~ It is then a 
trivial matter to see that g~ may also be realized by gr(s A ( K ) )  since 

[s163 = - s  = c # : , .  , s  = s (7) 

and A ( K )  is a domain for the Lie derivative. The r operators (s ~ a ~ r} 
then form a basis for Lie algebra gr(s A(K))  and the group Gr acts on 
A ( K )  by 

'~0 = exp(u"s to, ~o ~ A(K) (8) 

In view of these considerations, we can shift to the space 

(9) 

with local coordinates ( u% zA[1 ~< a ~< r, 1 ~< A ~< n + N }. It is now just one 
more step to consider the larger structure A(~r 

Let d denote the exterior derivative on ~. We then have 

d :  d +  d u, d = d[K, d . =  dig" (10) 
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where dlR denotes the restriction to R, and 

s s (11) 

because Vo ~ T(K) and hence exp(u"s restricted to A(Gr) is the identity. 
It is therefore consistent to allow G~ to act on A(N) by 

'a = exp(u~163 a ~ A ( ~ )  (12) 

In particular, we have gr(s A(~) )  and hence (s ~< a ~< r } is an operator 
basis for g~(s A(~)) .  It is then a simple matter to see that (12) applied to 
(~2)*A(K) reproduces (8). The reason why we have to go to the larger 
structure A(f f )  is because we will be interested in what happens when d is 
applied to the image of A(K)  under the action of G r ('co = exp(uas in 
order to prepare for an eventual dependence of the u" 's  on the xi 's  that 
comes about by a mapping from M, into G r. 

3. OPERATOR-VALUED CONNECTION I-FORMS 

For any o~ ~ A(K) ,  we have d(exp(u"s = exp(u"s d~0 because d 
and s commute and the u's are fixed. Thus, the exterior derivative on 
A ( K )  transforms covariantly under the action of G~. When consideration is 
shifted to A(N), things are no longer so simple because 

d(exp(u~163 co)=d(exp(u"s163 (13) 

by (10), and d ,  does not commute with exp(u"s A direct way around this 
difficulty is to set 

d.(exp(u~163163 = exp(u"s ^ a ) - ' r  A exp(u"s176 

(14) 

as suggested by the Yang-Mills construction of gauge-covariant derivatives 
(Yang, 1975; Drechler and Mayer, 1977). Noting that gr(s A(~))  has the 
operators {s ~< a ~< r} as a basis, we take F to be an element of AI(~) 
with values in gr(s A(~) )  and 'F to be the image of F under the action of 
Gr that is defined by (14). We therefore have 

F = W"s W a ~= Al(,~) (15) 
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and (13) and (14) combine to give 

d(exp(uOs Aexp(u~s = exp(u"s + r/x a) (16) 

This shows that 

D a  = d a  + F A a ,  'D'f~ = d ' a  + 'F A '• (17) 

serve to define a Grcouariant exterior derivative on A(~) ;  

'D ' a  = exp (u"s  ' a  = e x p ( u ~ 1 6 3  (18) 

It is therefore consistent to refer to F = W"s as an operator-valued connec- 
tion on A(ff).  

The transformation law for the operator-valued connection F on A(ff )  
obtains directly from (14) and (15): 

'F A exp( u"s ) a  = exp( u"s )( W b A s + d,,a ) -  d,, (exp( u"s ) a  ) 

(19) 

For the moment, set 

u"s = s R = u ~ V~ (20) 

We then have (8chouten, 1954) 

exp(s R )s - s ) a = q2 ( u" )s (21) 

for any linear geometric object field a, where the G's  are functions of the 
u's  only that are defined by 

exp(s V,, = Gf(ur (22) 

The relations (21) show that Gr acts on its Lie algebra gr(s A(~ ) )  by the 
adjoint representation since (22) shows that the G's give the adjoint 
representation on the vector space span(V,,ll ~< a ~< r). If we now set a =  
exp(s fl in (21), it follows that 

exp(s n )s = G~s163 R )fl (23) 

for any element fl of A(ff).  Next, we note that 

exp(s A fl) = (exp(s Aexp(s fl (24) 
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for any a, fl ~ A ( ~ )  because exp(s A fl) = T~(a  A fl) and Tn: K ~ K 
is the automorphism of K that is generated by the flow of R with canonical 
orbital parameter equal to unity. A combination of (23) and (24) shows that 

exp(s )( Wh A s ) = (exp(s Wh )/x exp(s )s a 

= (exp(s n ) W h ) A a~,s163 R ) a 

When this is put back into (19), we have 

'F a exp(s R ) a = (exp(s R ) W b) G~ A s163 R ) a 

+ exp(s d,,f~ - d , , ( exp(s  (25) 

The standard equations for the Lie group G r and the fact that f~ is a 
differential form on fr with coefficients from A~ = A~ x K)  show 
that 

0 
Ou" (exp(s f~ ) = 2th s163 f~ + exp(s ) .~_gu. ~ 0  

where the X's are functions of the u's only for which (O/Ou") ' z  "r= 
~ ( u ) "V~('z A ), 'z A = exp( u b Vb)z A. Accordingly, we obtain 

d,,(exp(s f~ ) = exp(s d~2 + du" A ~h~s163 f~ (26) 

When (26) is substituted into (25), it follows that 

' r  A e x p ( s  = (Gfexp(s W" - X~ du") As163 (27) 

Since (s ~< b ~< r} is a basis for gr(s A(~)) ,  this relation can be satisfied 
simultaneously for all a ~ A ( ~ )  if and only if 

'F = "Wbs (28) 

"W b = G2exp(u~s W" - ~P. du" (29) 

Thus, the image of any operator-valued connection F = W"s under the action 
of G~ is an operator-valued connection "F = 'W"s  and the 1-forms WU~ 
32 ( fg) transform under action of G~ by the generalized gauge transformations 
(29). This latter result is not unexpected, for F = W~s is an operator-valued 
connection and hence the W"'s should transform inhomogeneously under 
the action of G~. The unusual aspect is the very complicated dependence, 
exp(ues ", on the original 1-forms W ". 
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4. PROPERTIES OF D AND OPERATOR-VALUED 
CURVATURE FORMS 

Starting with (15) and (17), 

Dco = dco + W "  A s (30) 

for any W "  ~ A(~) .  it is easily shown that 

D ( c~ + fl ) = D c~ + D fl (31) 

D ( a  A fl) = ( D a ) A  fl +( -1)dcg(")a  A Dfl (32) 

The Gr-covariant exterior derivative is thus an antiderivation on A(~) .  The 
analogy with the exterior derivative stops here. however. 

Since Dco belongs to A(fr we have 

s162 = s dw + s  h A s + W b A s163 

On the other hand. 

Ds = ds + W h A s163162 = s dw + W I' A s163 

because c /and  s commute. When these are combined, the commutator of 
s and D is seen to have the evaluation 

(s  - Ds = s  h As + W"A ( s1 6 3  s163 ~~ 

Thus, when (7) is used, we have 

( s  D s  = p. A w (33) 

where 

oo = 0.% (34) 

is a system of operator-valued 1-forms and 

=s176 b + c2ew (35) 

are 1-forms on ~. 
If we start with an element a from ( � 8 9  D a  belongs to A(N)  

but not to (~r2)*A(K). It is for precisely this reason that the space ~' was 
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introduced in the first place, for Da ~ A(fg) allows us to apply the operator 
D to this quantity again. In particular, since (17) holds, we have 

'D'D exp( u``s )w = exp( u"s )(DDto) (36) 

and hence DDw is G r covariant. A direct substitution using D = d + W" A s 
gives 

DDto = O A co (37) 

where 

0 = 0"s 0`` = D W" + ~ C ~ W  h A W" (38) 

Direct analogy with the results of differential geometry (Schouten, 1954; 
Sternberg, 1964) and gauge theory (Drechler and Mayer, 1977; Rund, 1982) 
suggests that 19 be referred to as the operator-valued curvature 2-form 
associated with the operator-valued connection 1-form F = W~s and that 
(O~[l<~a<~r} are the curvature 2-forms on A(f~) that arise from the 
connection 1-forms { W``[1 ~< a ~< r }. This is further borne out by noting that 
(37) is a Gr-covariant equation and hence [see (20)] 

'O" A s  = exp(s R )(0 h A s  = (exp(s R)0 b) A exp(s R ) g a  

= (exp(s R ) O h ) A G;'s163 n ) a 

= G~, (exp(s n )O h )/x s  

when (23) is used. Accordingly, the curvature 2-forms transform under the 
action of G r by the homogeneous transformation law 

'0" = G~exp( u"s h (39) 

We now look at the two expressions D(DD~o) and DD(D~o). Since 

D D ( D w )  = 0 A Dw = O" A s162 

and 

D(DDr = D(O`` A s = DO" A s + 0" A Ds162 

we have 

D ( D D c o ) -  DD(D~o) = DO" As162 + 0" A (Ds - s 
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Accordingly, when (33) is used, we obtain 

D( D D w ) -  D D (  Dr =/3 A r 

where 

Edelen 

B =/3"s  /3.  = D0O _ p. ^ 0" (40)  

An elementary calculation based upon (35), (38) and the Jacobi identity 
shows that 13 ~  0 on fr for any choice of W " c  Al(f~). We accordingly 
have the desired result, 

D ( D D r  = D D ( D o ~ )  (41) 

and the corresponding Bianchi identifies/3o = O; that is, 

D8 ~ = p~, A 8 ~' (42) 

There is an interesting point that should be observed here. Slight 
rearrangements of (38) and (42) give 

D W  ~ O" f r o  uzh W",  = " (43) = - - 5 , . . b e , ,  A DO ~ G, A 0 e 

Accordingly, the ideal 

W =  I{  W 1 . . . . .  l'Vr, O t . . . . .  0 r } (44) 

of A(f~) is Gr-covariant differentially closed; that is, 

D W  c W (45) 

This observation is of particular use in certain applications associated with 
isovector methods (Edelen, 1980). 

An exceptional aspect of the Gr-cOvariant exterior derivative operator 
D is that any constant element of  A~ is G~-covariant constant, as follows 
directly from D k  = dk + W ~ A s = 0. We therefore have 

DC~,,, = 0 (46) 

since the structure constants of G are constant functions on ~. It is useful 
to compare this one-line derivation of (46) for operator-valued connections 
with the more customary approach in which derivation of the same result 
usually covers pages. 
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The fields of 1-forms W" that occur in the operator-valued connection 
F = W~s are often referred to in the literature as compensating fields; that 
is, fields that compensate for changes that arise from the local action of the 
group G~. This same interpretation obtains here. To see this, suppose that to 
is a G~-invariant form, to = exp(u"s We then have s = 0 and hence 
D,,, = dto + W ~ A s = dto. The Gr-covariant exterior derivative of  a G~- 
invariant form to reduces to the exterior derivative of to: 

s = to, 1 ~< a ~< r = Dto =d to  (47) 

The Gr-covariant exterior derivative thus differs from the exterior derivative 
only if the action of Gr changes things. This result is a special case of a 
general situation that will be of importance later. Let I be an ideal of 
A ( ~ ) .  It then follows directly from Dto =d to  + W ~ A s that 

s = 0 mod I ~ Dto -- aTto mod I (48) 

5. LIE C O N N E C T I O N S  

Up to this point, the 1-forms W ~ have been arbitrary elements of 
Al(ff).  We now specialize to the important case where the W ~ are invariant 
under t ransport  along the orbits of Gr; that is, 

s ~ = 0 (49) 

for all values of a and b in the range 1 through r. Operator-valued 
connections F = W~s with the W ~'s satisfying (49) will be referred to as 
Lie connections. 

The constraints (49) are not as severe as might appear on first reading, 
for W" are 1-forms on ~ rather than on K and s h=  0 are identically 
satisfied on ~.  The full scope of this can be seen by setting W ~ = T ~ + w~ duh 
with s " =  0. In this event, (49) is satisfied provided Vh(w~)= 0 hold. 
However, Vb(w~.)=0 is a complete system of linear first-order partial 
differential equations because [V~,, Vh] = C~hV e. Thus, since (u~[1 ~< a ~< r )  
are r primitive integrals of V , ( f )  = 0, we have w~ = 't '~(ub; ~/") where the 
�9 I " s  are arbitrary C ~ functions of their arguments and {'0~ ~< o ~< n + N -  
r )  together {u"[l~< a~< r} constitute a complete system of primitive in- 
tegrals of V , ( f ) =  0. Here, of course, it is assumed that the set (r/~ is 
vacuous if n + N ~< r. 
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If F = W " s  i s  a Lie connection, we have 

D W "  = d W "  + W b A s W "  = d W "  (50)  

Equations (38) then show that the associated Lie  curvature 2-forms 0" are 
given by 

0 a d W  a 1 a h W e = + ~ C h e W  A (51) 

which are the familiar representation for curvature 2-forms in gauge theory 
(Yang, I975; Drechler and Mayer, 1977). 

Satisfaction of (49) implies exp(ues = W". Thus, if F = W " s  is a 
Lie connection, (27) and (28) give 

.r=.w.s (52) 

, w  o = G g W  b - ~ dub (53) 

Thus, if Gr is restricted to a constant section (du b = 0), the W"'s transform 
by the adjoint representation. In the general case, it is useful to write 

where 

"W" = Gy, W b - X" (54) 

x~ b (55) 

are 1-forms on Gr that satisfy the Maurer equations 

d),u__ Ig-,a )~I~ 
'" - ~-'~he'" A ( 5 6 )  Xe 

Noting that G~, and ?r are functions of the u's only, it follows that 
s = 0, s b = 0. Accordingly, (5.5) gives 

' - = c g s  o 0 s W = (57) 

and hence the action o f  G, takes  L ie  connections into L ie  connections.  The 
collection of all Lie connections is thus closed under the action of G,. 

If 0" are the Lie curvature 2-forms of a Lie connection F = W"s (51) 
shows that 

s - . l a h W e W b  =ds +~_Cbe(s A + As (58) 
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We thus have exp(ues " =  0 ", and hence (39) gives 

"0 ~ = G~O h (59)  

Lie curvature 2-forms transform under action o f  G~ by the adjoint representa- 
tion. This result lies at the heart of later matters since it provides the means 
whereby a GTinvariant 4-form may be constructed. The coefficients { GT,(u)) 
of the adjoint action of any element of G, satisfy (Rund, 1982) 

and hence 

where 

(60) 

(61) 

C~h = C~,,Cff' e = Ch~ (62) 

are the components of the Cartan-Killing form on Gr. It is then a simple 
matter to see that 

p = C~bO ~ A O h (63) 

is a G,-invariant 4-form on ff for any Lie connection F = W~s (i.e., 
C~bO ~ A 0 b = C~bGe~GfO ~ /x 0 / =  CqO e/X Of). We note as a matter of con- 
sistency that (53), 

,0 a = d ,W,~  + 1 c-~ , w b  A ' W  e (64 )  
~ " b e  ' "  

and the group equations (Rund, 1982) 

dh~ = • r ~ xb 2"--be'" A M, dGg = C ~ G [ M  (65) 

lead directly to the transformation law (59). Conversely, (51), (53), (59), and 
(65) lead to the determination (64) for 0~: evaluations of  0 ~ in terms of  W ~ 
are G~ invariant. 

Suppose that W ~ defines a Lie connection and that 

W ~ = g~'(~) ~be(fi ) d~ e, G~( f i )g~ ( f i )  = 8~ (66) 

for given (fi~ }. In this event, the transformation generated by (flu) will 
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annihilate the W~'s, as follows directly from (53). We then have 0 = 0 " =  
G~,(~)O h and hence we see that 0 ~= 0 in this case. Conversely, it is a 
lengthy but straightforward calculation to show that 0" = 0 only if the W ~'s 
are given by (66) for some choice of the ( fi" ). The considerations combine 
to give the following important result. A Lie connection can be annihilated by 

an appropriate choice o f  an element o f  G r i f  and only i f  the associated Lie  
curvature 2-forms vanish. 

6. THE LIE G R O U P  OF S Y M M E T R I E S  OF AN ACTION 
INTEGRAL 

It is assumed, for the purposes of this discussion, that a physical system 
in a flat, four-dimensional (n = 4) space-time M 4 is described by a system 
of m fields { q,"(xJ)[1 ~< ~x~< m }. These fields give rise to a kinematic space 
K of dimension n + N = 4 + 5 m  with local coordinates (x  g, q~, y,"[1 < i ~< 4, 
1 ~< a ~< m } and contact 1-forms 

C ~ = dq ~ - y~' dx ~ (67) 

The 5m-dimensional space with local coordinates (q'~, YT} is the range 
space for the q;s and their first partial derivatives. Realization of the actual 
fields obtains through the class ,,~ of regular maps �9 : M 4 ~ K such that 

and 

~*/~ 4= 0 (68) 

�9 *C" = 0, 1 ~< a ~< m (69) 

The requirement (68) forces r to map M 4 onto a four-dimensional section 
of K with a nonvanishing projection onto M 4. We may therefore assume 
that ~l,*x ~ = x ~, 1 ~< i ~< 4 without loss of generality. Accordingly, any r that 
satisfies (68) has a realization 

r  x', q~ = ,O(xJ), y7 = q,7(xJ) 

When this is used in conjunction with the conditions (69), it is easily seen 
that q~7(x j)  = O / f ( x J )  (see Edelen, 1980, Chap. 2). Thus, any qb ~ ~ has a 
realization 

dPlx'= x ' ,  q'~ = q~"(xJ), yi" = 0,qr j )  (70) 
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Any regular map ~:  M 4 --, K thus defines a four-dimensional section of K 
that is the graph of the fields q,"(x j) and their first partial derivatives. 

The contact forms C '~ give rise to the contact ideal 

C= I{C 1 . . . . .  C" )  (71) 

of A(K). If V e T ( K ) ,  we have 

,~i (72) V = v~Oi + v~O~ + v i O~ 

where 0 i = 0 / 0 x  i, O. = O/Oq ~, O~ = O/Oyi ~. The collection 

TC( K ) = ( V ~ T( K )Is C C} (73) 

constitutes the set of all isouector fields of the contact ideal C, Any 
V ~ TC(K) has the form (Edelen, 1980) 

V= f i ( x i ,  q#)Oi + f~(xJ, q#)O~ + . i Zi(VJC >0. (74) 

with 

z,  = a, + y?a.  (75) 

Isovector fields have the property that they transport regular sections of K 
into regular sections of K and hence they preserve the correlation of ~*y~ 
with Oi~p*q ~'. 

Let L(x  j, q", y~) be a given smooth function on K. The action integral 
associated with any regular map �9 is defined in terms of L by 

A[rb]= fM~*(Ll~)= fML(x i ,  ck~(xJ),Oiq~(xJ))dxldxZdx3dx4 (76) 

Thus, the action is a map A : ~ ---, R of regular maps into the real line and L 
is the Lagrangian function for the physical system on kinematic space K. 

The full content of the calculus of variations is available in this context, 
for the variational process is directly generated by study of the deformations 
of the action that arise as a consequence of transport along the orbits of 
isovector fields of the contact ideal C (see Edelen, 1980, Chap. 5). Let Tv(s ) 
be the one-parameter family of automorphisms of K that is generated by 
transport of points of K along the orbits of V ~ TC(K). Since Tv(s ) maps 

into ~ by composition, each member of the one-parameter family of 
maps 

d~v(s)= T v ( s ) o ~  (77) 
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is a regular map and (76) gives 

A [ , , . / s ) ]  = ,. ,0 

= fM ~*exp( ss c )( L/~ ) 

since T~,(s)*c~ = exp(ss for any c~ ~ A(K).  Thus, the finite variation of 
the action A[~] is 

A v ( s ) A [ ~  ] = ~ ,  ~* (exp( s s  1)(Lit) (78) 

and the infinitesimal variation 8vA[eb]= l im,_o(s-lAv(s)A[09]) has the 
evaluation 

6 v A [ ~ l  = ~t ,  ~*s ( Lp. ) (79) 

Annihilation of the infinitesimal variation of the action for all V ~ TC(K)  
that do not deform the independent variables x ~ (Le., V(x ~) = 0) gives the 
Euler-Lagrange field equations for the r  while the general variation 
process with V(x i) 4~ 0 leads to results in the calculus of variations in the 
large and to the well-known transversality conditions. 

This context provides a particularly simple setting for study of symme- 
tries of the action. Let N~(L) be the collection of all Noetherian vector 
fields of the first kind (Edelen, 1980): 

Nt ( L ) = { V ~ TC ( K ) Is ( Ltt ) =- 0modC} (80) 

Since any regular d~ is such that d~* annihilates the contact ideal C, (78) 
and (80) give the global invariance 

A[*v( s ) ]  = (81) 

for all V ~ NI(L ). Now, TC(K)  forms an infinite dimensional Lie subalge- 
bra of T(K)  and hence Nl(K ) forms a Lie subalgebra of T(K)  since 
s vl(Ltt) = (s163 - s163 -= 0mod C. Further, the Lie algebra NI(K ) 
is almost invariable of finite dimension, say k, in which case there are k 
independent current (n - 1) forms that are conserved for any �9 that renders 
A[~b] stationary in value (Noether, 1918; Edelen, 1980; Edelen, to be 
published). 
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The Lie group N~(K), or a Lie subgroup thereof, provides the obvious 
candidate for the group G r considered in previous sections. We therefore 
consider the case where G~c NI(L), in which case we have Vo ~ NI(L), 
1 ~ a ~< r. It is then a simple matter to construct the r-parameter family of 
maps 

dp(fi") = T(fi") o ~ (82) 

where the fi"'s are "constant" canonical parameters of Gr and T(~ ~) is 
generated by the flow associated with V=  fiuVo. In this event, (81) gives the 
global G r invariance 

where 

Now, 

A = ( 8 3 )  

A [q b( fi" )] = f g ~ * e x p (  ~"s )( L~ ) (84) 

'L '/x = (exp( fi ~s ) L )exp( fi os )/~ = exp( fi us o )( L~ ) = '( L/~ ) 

while s 0rood C gives 

'L'~ = '(L#) = L/I mod C (85) 

Thus, since ~b* annihilates C, we have the Gr invariance 

'dP*(L~) = dP*'(L~) = 4p*(m~) (86) 

where "~ = T(fiO)o dp, and 

'r ~ = ~ * ' C "  = 0 (87) 

because s '~ = Oa(VaJC~)C ~ [i.e., s c C, see Edelen (1980), Chap. 5] and 
is regular. 

7. THE MINIMAL REPLACEMENT CONSTRUCT 

Many gauge theories have been based upon cases in which the group Gr 
is an internal symmetry group of the physical state variables; that is, the 
action of G r leaves the manifold M 4 of space-time invariant while changing 
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the q,'s and the y 's .  This restriction is clearly not essential (see Kikkawa et 
al., 1983), for gauge theory constructs rest on the fact that the group G~ is an 
invariance group of the action A[(I)] of the physical system under considera- 
tion. We therefore take up the general case here and later specialize to the 
important situation in which Gr is the ten-parameter Poincar6 group. 

The considerations of the last section were based on the supposition 
that the canonical parameters { ~"11 ~< a ~< r } were constants. The action of 
the group Gr on K was therefore global. Thus, the action integral A[(P] is 
invariant under the global action of any G~ c N~(L) for all regular maps (I). 
On the other hand, gauge theory arises by allowing different elements of G~ 
to act at different points of M 4 while preserving the invariance of the 
action. There are clearly two parts to this problem. The first is to allow the 
canonical parameters to vary from one point to another over M 4, and 
the second is to retain the invariance of the action A[(P] under the resulting 
local action of the group G~. 

The simplest way of accomplishing these tasks is to lift considerations 
from K to the larger space fY = G~ x K with local coordinates 
{ u"; x ~, q'~, I,~ } ; that is, 

{zAI l<~A~4+5m}= (xi q",y"ll<~i<~4,1<~a<~m} 

n = 4 and N = 5m. For this general setting, the group space coordinates 
{ u"} are independent quantities that may vary in any way we please. Once 
things have been analyzed in ~, we will be able to consider sections 
S: M a --, Gr without difficulty. There is actually no real choice in the matter, 
for S*(exp(u"s  is quite different from exp (S*(u" ) s  for a ~ A(K ). 
Put differently, position dependent action of Gr means that different 
elements of G~ act at different positions, that is, S*(exp(u"s not 
exp(S*(u")s In fact, exp(S*(uO)s R will belong to G r only if S: M 4 

Gr defines a Gr-constant section { u" = k"ll  ~< a ~< r }. 
Let F =  W"s be a Lie connection for the group G~c N~(L) and 

assume that the W"'s have the form 

w ~  h (88) 

with s = 0. If alk denotes the restriction of any exterior form on fr to 
a constant section of Gr (i.e., u" = ~i" = const, 1 ~< a ~ r), we have W"lk = 0 
and hence 

( Da)lk = d(alk),(da)lk = d(alk) (89) 

This, however, is exactly the case in which the group Gr acts globally on K. 
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All of the results of the previous section thus lift directly to Gr-cOnstant 
sections of ~. 

In order to remove the restriction to Gr-constant sections of ff we note 
that 

'(dz A) = exp( .~163 dz" # d(exp(u~163 '') = d ' z '  

because the u's can change, but 

'( Dz A ) = exp( u"s ) Dz a = 'D (exp( u~163 ) z  A ) = ' D ' z  A 

by (18). Further, (89) shows that Dz a restricted to any Gfconstant section 
of ~ agrees with dz A. Thus, if we simply replace the exterior derivative by 
the @-covariant exterior derivative in all statements in Section 6, these 
statements become Gfcovariant statements on ~. 

Let the replacement operator 

be defined by 

,.r + B ) = ~ a + ~ # ,  

~ : d  ~ n (90) 

~ ( a  ^ •) = ( ~ , ~ )  A (~ '~) ,  

j g ( d z A ) = D z  A, J Z ( d u " ) = D u ~  ", J g f = f V f ~ A ~  

Thus, since A(ff)  is a module over A~ that is generated from the basis 
(1, dz A, dub), Jig is well defined on A(~) .  Some care must be exercised 
here, for ~ ' ( d a )  4: D(~Cga). Simply observe that ..gg( d( z A dzB)) = ~r  dz "f 
/x dz ~) = Dz  A A D z  B, while D J g ( z  Adz  B) = D ( z  A D z  8) = Dz A/x Dz  A + 

z A D D z  B and DDz  B = O"s ~ 4: 0. On the other hand, 

Of duo 
~ (  d f  ) = Dz ~ + Ou---" ff 

for any f ~ A~ We thus have 

~C" = Dq" - y/~ D x ' =  C '~ + W o (  V, ,JC ~' ) (91) 

J/t'(Lp.) = . / g (L)  Dxl  A D x  2 A DX 3 A D x  4 (92) 

while (88) shows that 

(,At'C") l, = C'L ( . .a ' (L#))  I~. = Lp. (93) 

Further, ' (Da)  = exp(u~s Da = ' D ( e x p ( u " s  = ' D ' a ,  and Du ~ = du ~, 



968 Edelen 

' u " =  u" because s We therefore have ' ( . . r163 
J t ' (exp(u"s  = Jt '( 'B) where J r  ~ ) = 'O 'zA:  

(94) 

Accordingly, 

' ( ~ ( L b t ) )  = dg'('(L/x)) (95) 

under the action of the group G,. 
There is quite a bit more here, however, for (Jc'(L/z))lk = L/z and also 

(~g(L/~)+'o)lk = Lp, for any , / � 9  A4(N) that vanishes on Gr-constant sec- 
tions of ~. Further, (95) gives 

' ( J I ( L / ~ )  + ~ ) =  ,it '( '(L/z)) + ,/ (96) 

provided ~ is a Gr-invariant 4-form on N (exp(u"s Thus, the 
transition 

L/~ ~ ~t'( L # ) +  77 (97) 

for any "11 �9 A4(~) such that 

"01k = 0 ,  '~/= exp(u"s = ~ (98) 

lifts LIz �9 A4(K) up to an element of A4(N) for which 

(dg(  L/~)+ ~)lk = L# (99) 

7 )  = + (100) 

The partial transition L f . ~ ( L f x )  will turn out to be the Yang-Mills  
minimal replacement, while . /g(Lt%)~C.[(Ll~)+~ is the basis for the 
Yang-Mills minimal coupling construct. 

The construct arrived at in this way is more general than actually 
needed, for we are interested only in what happens when the cononical 
parameters (u~[1 ~< a ~< r} vary over the space-time manifold M 4. It is 
therefore necessary to cut things down by introducing mappings 

S: M 4 ~G~lu"=s"(x j) (101) 



Operator-Valued Connections 

When S acts, (88) gives 

and hence we may write 

969 

S,WO=(S,W;) OSbax, 
Ox t 

S*WO= W,O(xJ) dx' (102) 

where { W,"(xJ)]l  <~ a <~ r, 1 <~ i <~ 4} is taken to be a system of 4r newfie lds  
that compensate for the local space-time action u" = s " ( x  ~) of the group G.. 
Now, S* da  = dS*  a and hence 

S* Da  = dS*  a + Wi" dx  i A S * s  (103) 

If a depends on the u" ' s  in any way, S * s 1 6 3  On the other hand, if 
fl ~ A ( K ) then S *fl = fl and we have 

S * D f l  = aft + W,"dx '  As (104) 

which we will simply write as D*fl for f l ~  A ( K )  from now on. The 
Gr-covariant exterior derivative D* thus induces the G;covariant derivative 
D**, where 

Di* y = cgiy + W~"s 

for any linear geometric object field 3' on M 4. 
A combination of the two operations S* and MAt' gives what is usually 

called the minimal  replacement 

MAt'* = S*Jg (105) 

In particular, we have 

~ *  d x ' = D * x ' = d x ' + W j ~ d x J s 1 6 3  j (106) 

�9 #d*dq '~ = D*q"  = dq '~ + " '~ J Wj s dx (107) 

and hence (91) and (92) give 

r  + ( V . J C  )W, dx  (108) 

, .g*(L/z) = Jr ' (  L )det( 6j + Wj"s (109) 
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The 4r quantities { ~"(xi)L1 ~< a ~< r, 1 ~< j ~< 4} constitute a system of 
new fields that compensate for the space-time dependence of the action of 
the group G r. In this vein, it must be clearly noted that we have gone from 
the system of r +  r 2 quantities (u". W;'} to the system of 4/" quantities 
{ W,") since the individual u" 's  become lost among the other x '  depen- 
dences once the map S: M 4 --+ G r has been effected. This, however, is the 
standard situation in gauge theory, for a specific mapping S: M 4 ---, (7,. is 
not obtained, only the compensating fields ( ~ " ( x ) ) .  Accordingly, we must 
adjoin the 4r quantities ( W," } to the list { q", y f  } as a system of new state 
variables. 

There is now an important question that must be resolved; namely, 
what is the image of a quantity S*a under the action of the group Gr? The 
considerations given at the beginning of this section concerning the nature 
of the map S* show that the action of G r must be computed in ~ and only 
afterward cut down by sectioning with S. This means that the image of S*a 
can only be defined by 

' ( S ' a )  = S*(exp(u"s  = S*( 'a)  (110) 

Thus. since Mr'*---S*~t', (110) and (94) give '( . /a '*a)='(S*.//4'~)= 
S*('(./R'a)) = S*..~('u); that is, 

'(Mt'*a) = J t '* ( ' a )  (111) 

In view of the transition C"--, JR'*C", the induced transition of the 
contact ideal C is 

C ~ C* = J { * C  = I( . / /g*C' . . . . .  ./R'*C" } (112) 

Now, Grc  NI(L  ) so that (85) holds. We thus have 

.At'* ('(L/*)) - ..r * (Lp.)mod C* 

and hence (111) gives 

'.//t' * (Lp.) - .//t'* ( L~)mod C* (113) 

For S: M 4 ---, Gr the transition (97) becomes 

L/, ---, .//4' *(Lp.) + S*rl (114) 

The new action integral is thus given by 

y[,x,] = s  ,x,* + s*,7) (115) 
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for any regular map 

~ 'M4+KXR4" Ix '=x  i, qa = q?' ( x - ' ) ,  14~" = 14~," ( x ~' ) 

~*~t'*p. v~ 0. ~*C* = 0 (116) 

(recall that minimal replacement induces the transition p.--* Jt'*/~ and that 
the quantities { W, ~ } are to be included as new field variables). We now 
simply observe that (98) and (110) give ' (S*~) = S'7/ and hence 

"(,,gg*( Ll~)+ S* 'q) - , / / t ' * (  Ll~)+ S * ~ m o d C *  (117) 

by (113). Accordingly, (115)-(117) show that the new action integral, A [@1, 
is invariant under the local action of the Lie group G r. 

It should be noted that we started in K where each V. that generates G~ 
is an isovector of the contact ideal, 

s a =  A'~I~CI3 (118) 

for which s -- 0 mod C. Under minimal replacement, C" is replaced by 
~ * C  a = C a + W"(V,  JCa). Thus, when (118) is used, we have 

s a = ( V,,aCa)(s e + W"C;.  )rood C* (119) 

The generators of G r fail to be isovectors of C*. Thus, although the new 
action A [~] is Gr invariant, the contact forms are only Gr covariant: 

'( ~ *C a ) = Jr '* ('C ~ ) = 'D 'q  a __ 'Y7 'D 'x '  (120) 

What this means is that the r conserved currents that arise from global 
action of Gr go over into r balanced currents that are integrability condi- 
tions on the field equations for the compensating fields of the local action of 
Gr, as we shall see in the following section. 

8. VARIATIONS AND THE FIELD EQUATIONS 

The problem at hand is that of obtaining the governing Euler-Lagrange 
field equations. These obtain from rendering the action 

A--[ ~P ] = Ja4f ~P*(Jt'*( L/~)+ S*rl) (121) 
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stationary in value subject to the constraints 

O*C* = 0, r162162162 v~ 0 (122) 

where 

~ .  M4.--,K X R 4 r l x i = x '  ' q'~=~-(xi), W " - W [ ' ( x  - 

d)*~ 4: O, ~*.~g *C" = 0 
(123) 

and rl is a Grinvariant 4-form on ~ that vanishes on Gr-cOnstant sections of 
G r. Now, 

/ . [*  dxi = D*xi  = T/ dx j (124) 

where 

�9 a i ~ i = ~ + W j s  (125) 

and hence 

.Ar = det(T/)  ~ (126) 

We therefore have Jt'*(L/~)=..4t'*(L)det(~i)#. Now, L ~  A~ L =  
L ( x ~ , q %  YT), and hence J ( * ( L ) =  L; that is, 

�9 At'*( L/~)= L det(Tj')/~ (127) 

The reader accustomed to the standard minimal replacement construct 
might expect to see the YT'S change in L. This is not the case here, for the 
YT'S are independent quantities in the space K. We shall see, however, that 
�9 *yf will be drastically different as a consequence of satisfaction of the 
constraints ~*~'*C" = 0 rather than ~*C" = 0. Minimal replacement does 
have its expected effect on the derivatives of the field variables, but these 
effects come about only after application of ~*. 

The exact nature of the 4-form 7/, and hence S**/, is somewhat 
arbitrary at this point, although S*~/ must account for the presence of 
Q-curvature terms. Accordingly, we shall deal with the problem in the 
general form 

S * n  = (128)  
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with 

L =  L (  xJ, q ", yT, Wfl, O,"j) (129) 

Here, we have set 

s * o - = o ' = ~ o 3 a ~ ' A  dxJ, o 5 = - o ;  

o ~  = a w "  + � 8 9  ^ w ~, w o =  w," ax ~ (13o) 

The easiest way of dealing with this variational problem is to shift 
directly to the space R with local coordinates (x ~, q", Wfl). A vector field on 
R has the form 

U = UiOi Jl- UaOa + UiOuU i 

where we have set 0~ = 0/0Wfl. The classic variational process requires 
increments of the field variables that are functions on M 4, while the points 
of M 4 itself are unchanged by the variation process. It is therefore sufficient 
to our purposes to take U ~ = 0 and all of the remaining U's  to be functions 
of the x ~'s only; that is, 

a j i u = u ~ ( x J ) O ~  (x  )o~ (131) 

We may then use Lie differentiation with respect to U to compute the 
variations in Y7 and O,~ that arise from the variations (U", Ufl) in the basic 
fields (q", Wil L respectively. 

The induced variations in the YT'S are obtained through satisfaction of 
the conditions 

s '~ = 0 (132) 

that is, the variations preserve the constraints (122). Now, a combination of 
(106), (107), (108), and (125) yield 

,At*C" = dq '~ + Wfls dx i - yTT/  dx j (133) 

We therefore have 

r  = (ajr + ~~162176 **y:r axJ 
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and hence satisfaction of the constraints (122) demands that 

�9 * ( ) , , ~  : 0 j r  + ~ " ~ * ( s 1 7 6  

for any map @ of the form (123). These are the relations that determine the 
place holders y," in T_. when we come down to actual evaluations in terms of 
the fields { q~~ Wfl(xt)}. 

Noting that (131) gives 

s163 ~ = Ut~ Ot~s ~, s163 = Ul~ Ol~s " 

(132) and (133) lead to 

(s176 ~ ' =  O,U ~ + Uj"s + U~WjO~s 

-.)'," (U:"s x i +U/3W/'OBs ' ) (134) 

It is clear from (126) and (I)*.//t'*p. 4:0 that we must require 

de t ( ~ ' )  4:0 (135) 

and hence we may introduce the quantities t~ by 

Tjt~ = 6~ (136) 

Thus, (134) yields the desired specific evaluation 

s ~ = ( O/U" + U:"s ~ + U'WfO,s  ~ 

- + ( 1 3 v )  

Computation of the variations that are induced in | are most easily 
accomplished by noting that (131) yields 

s  --- u," dx ~ (138) 
Accordingly. (102) gives 

s O~ --= ds + s h A C;~,W' (139) 

Further expansion is unnecessary, as we shall see presently. 
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We now have all of the results needed to proceed with the final 
calculations. Since s = (s because s = 0 (recall that U ~= 0), 
we need only compute s L. Thus, introducing the notation 

we have 

L,~ = OL/Oq ~, L~ = Os ~ (140) 

' =  OL/OW~"lo,, (15o) a~, = o Z i o o ~ ,  o. 

L a , . i d r i~d s ( ou + )~ (151) = L'ds + ~ + ~.  ~u--ii 

It is now simply a matter of substituting (137) and (139) into (151) and then 
discarding all divergences a n d / o r  exact 4-forms in order to obtain the 
Euler-Lagrange field equations. 

The field equations for the q~'s (for the #"s )  come from collecting 
together all terms that involve the U ~'s and their derivatives that appear in 
(151): 

o j ( t / c ' . v . ) , + v . ( c . - o . (  J '  o o t i L t ) +  t iL~W J ( Ors -y~'Ors 

Standard practices of the calculus of variations thus give the Euler-  Lagrange 
equations for the q~ fields: 

~ * { O j ( t / L : ) } = ~ , ( L . + t / L i # W j . ( O ~ s  t~ A- - Yk O . s  )} (152) 

The terms in (133) that involve the variations U," in the W" fields are 
given by 

" + J ~ ~ -  +~'J~: •"] (153) ~ = [ ~  {oJ t i L . ( s  y~'s . . . V V u l ~  

If we set 

where 

J i ,, A 3 J . =  (o~ + t i L ~ ( s  -- y ~ s  

G. = ~ 61/t~ u ~ Az 

(154) 

(155) 

I~u = O,H~j, dx k/x/x  u = 8[/zj - 8f/~, (156) 



976 Edelen 

then (130), (138), and (153)-(156) give the particularly simple evaluation 

~ = s  A J~ - 2s A G,, (157) 

When (139) is used, an elementary rearrangement gives 

~ u o  ~ ^ eo = d ( s  ~ A e o ) + s  o ^ ( deo + c ~ , w c  ^ o~) 

We therefore have 

~ = s 1 6 3  (158) 

Standard practices of the calculus of variations thus give the Euler- Lagrange 
equations for the W,. ~ fields: 

e~*( dG~ + C)cW" A G h } = �89 (159) 

The field equations (159) obviously entail integrability conditions. If we 
write (159) in the equivalent form (G* = O*G~, J* = ~*J,~) 

d e *  = 1 j ,  _ Cf,.WC A e ~  (160) 

then exterior differentiation gives 

~ dJ* = Cfc( dW"  A Oy - m" A dGy ) (161) 

When (160) a n d |  ~ ~ " ~ W f + ~Cj fW A are used to eliminate dG~ and 
dW" from the right-hand side of (161) and the Jacobi identity is applied, the 
integrabi6ty conditions for the Wi~-fieM equations are 

dJa* + CfcWC A J~' = 2CfcO" A G'~ (162) 

If the dependence of the Lagrangian L on Wf and | is such that 

b c C2,.0 A G~' = 0 ( 163 )  

which would appear to be the case as a consequence of G r invariance 
(Rund, 1982), we obtain the Grcovariant current conservation laws 

dJ* + Cf,.W ~" A Jff = 0 (164) 
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We saw at the end of Section 7 that 

s o = (v Jco)(s e + w o c L )  

so that Gr is not generated by isovectors of the ideal C*. The r exact 
4-forms (conservation laws) that are implied by G r c NI(K ) would appear 
to have been lost. What has actually happened is that the minimal replace- 
ment construct carries these conservation laws over into the system of r 
integrability conditions (162) or (164). In the case of (164), we recognize a 
system of Gr-covariant conservation laws that replace the usual ones on 
Gr-constant sections. 

9. GAUGE THEORY FOR THE POINCARE GROUP 

Most variational principles of current interest in physics (Bernstein, 
1974; Weinberg, 1974; Sirlin, 1978) are manifestly invariant under the 
ten-parameter Poincar6 group, P10(R)= L(4, R)t> T(4), where L(4, R) is the 
Lorentz group, T(4) is the four-parameter translation group, and t> denotes 
the semidirect product. In addition, the flat space-time manifold M 4 carries 
a Lorentz structure 

dsZ=higdx'| j, ((hij))=diag(1,1,1,-1) (165) 

for which Plo(R) is the maximal group of isometries. 
In view of the semidirect product structure of Plo, it is natural that we 

decompose the canonical parameters (u"]l ~< a ~<10) into two sets by 

( u " l l ~ < a ~ < 1 0 } = ( u r ; u q l < ~ r < ~ 6 , 1 < i < ~ 4 }  

If ( v~ll ~< a ~< 10} is a basis for the Lie algebra of P10 realized as a group of 
automorphisms of M 4, we have 

V = UaOa ~- Urlr + UiOi (166) 

where the {l[j} is a basis for the matrix Lie algebra of L(4,R); 

hi~.l ~ + hjklr~ = 0 (167) 

Now, 

[v~, vb] = C•bv" (168) 
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where the C's are the structure constants of Pro, while (166) shows that 
[0 i, 0j] = 0. The Cartan-Killing form (C~t,} thus has rank equal to six. The 
6-by-6 form { C~,~[1 ~< r , s  ~ 6} is nonsingular if we identify the first six u~'s 
with the six u~'s. We therefore set 

u" = 6~"ur + 8t~'+ y (169) 

The statement that the action is invariant under PI0 means that Px0 
must be lifted to an isomorphic global group G m of Noetherian vector fields 
on kinematic space K. Now, K is a (4+5m)-dimensional space with local 
coordinates (x~,q  , .h ), so we must say something about how the state 
variables {q'~} behave when M 4 is subjected to the action of Pro. It is 
reasonable to assume that { O*q"} transform under the global action of Pm 
as linear differential geometric object fields (as combinations of scalors, 
vectors, tensors, etc.). As such, the global translation part, T(4), of Pm will 
have no effect and we may write 

lgaVa -~" ,,iO i Jr- l l r l r  "-}- urM~qflO,, + uaZ, (V , ,AC" )  Oi~ (170) 

Here, 0,~ = 8 / O q ' ,  O~ = 8 / 8 y i  ~, and the M ' s  are constants that are de- 
termined by the transformation properties of the q" 's  and are such that 

[ Vo, Vh] = C~hVe (171) 

that is, 

ct y t y M~M~Y. - M~I~M~, , = Crs M, fl, 1 ~< r, s, t <~ 6 (172) 

Here, the lower-case C's are the structure constants of L(4,R). For exam- 
ple, if four of the q's, say, ( T i ), constitute the components of a vector field 
oil M 4 when pulled back by any regular map �9 : M 4 ~ K, we will have 

' T / =  TJO'x i /ax  ' =  TJ( 8j + uq~j + o (u~) )  

= T i +  uqr o ( u  r) 

r i  j Hence, the corresponding terms in (170) will be given by u l a T  (8 /OT~) .  
These clearly satisfy (172). 

The minimal replacement construct for Pm may now be obtained 
without further ado; simply apply the results obtained in Section 7. To this 
end, we set 

W ~ = 6 ~ W  r + 6fl,+,W' (173) 
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in conformity with (169), where 

W r = Wi r ax i, 1 .%< r .%< 6 (174) 

are the compensating fields for L(4,•) and 

W ' = l/V/ dx j, 1-%<i.%<4 (175) 

are the compensating fields for T(4). Thus, since D*x  ~= d x ' +  W"s ~, 
D ' q "  = dq ~ + W~s ~, we have 

D*x  i=  ( 8j + W; i + Wjrl[k Xk ) dx j (176) 

D*q" = dq '~ + W f M ~ q  ~ dx j (177) 

Accordingly, (133) and (127) yield 

M g * C " =  dq" + l/Vf~l~q# dx j -  )'~( 8) +Wj' + WflCkxk ) dx j (178) 

Mr'*( L ~ ) =  Ldet(6) + Wf  + Wfl[kX k )1~ (179) 

An interesting and characteristic result now obtains. If we apply the 
minimal replacement operator to the Lorentz structure (165), we have 

dS 2 = ~ t * (  ds z ) = T ;h , jT /  dx* | dx '  (180) 

where we have set [see (126)] 

T; = + W; + w;t jxJ (181) 

Accordingly, we may write 

where 

dS2 = gij dxi|  dx j  (182) 

g,j = T?h k,Tj/= gji (183) 

Minimal replacement may thus be viewed as a construct that replaces the 
Lorentz structure ds 2 on M 4 by the more complicated pseudo-Riemannian 
structure dS 2 through the transition process h i / ~  gi/. It is assumed that the 
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minimal replacement construct is regular in the sense that 

de t ( ~ ' )  =~ 0 (184) 

which is clearly necessary in view of (179). (183) then shows that g~j and hij 
both have the same signature, namely, 2, and that dS 2 defines a proper 
pseudo-Riemannian structure on M4. Further, it follows directly from (183) 
that 

Thus, if we set 

det( g,j ) = det( h i, )det( ~i )2 = - de t (T/ )  2 (185) 

while (178) becomes 

Jg*Ca= dq '~ + ( WjrM~q ~ -  y,'~T/) dx J (189) 

The form L(-g)' /~-Is given by (188) is immediately recognized as the 
standard form of an action 4-form on a pseudo-Riemannian space-time with 
fundamental metric form g,j dx'| dxJ. 

The total action functional in this new context is given by 

A-[*] = fMO*( L(-  g)'/:l~ + S*rl) (190) 

where 7/ is a G]o-invariant 4-form on Glo and 

~ : M 4 - * K • 1 7 6  i , q ~ = r  Wi" = W,'(x j ) 
(191) 

O'p, ~ 0, O*,/g*C" = 0 

see (121) and (123). 

g = det(g,j)  (186) 

which is necessarily negative, (185) gives 

de t (T/ )  = ( -  g) ' /2  (187) 

Accordingly, when (181) is used, (179) may be rewritten in the equivalent 
form 

) = L (  - g (188) 
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In order that we may determine possible forms for "q, we first calculate 
the forms of the curvature 2-forms, | for G~0. Since O " = d W "  

1 g'-'a [,[fh[/[/c + ~_ "-h,. . . . . .  (169) induces the decomposition 

(~a = ~raOr ..~_ ~ +  i~)i ( 1 9 2 )  

Noting that G~o and P~o have the same structure constants, we have 

G = 0, C~ = 0, G = 0 (193) 

with 1 ~< i, j~< 4, 1 ~< r, s ~< 6. It is then a simple matter to see that 

| ~ = d W ~ + ~ C~ W " /x W q l <~ r , s , t <~ 6 (194) 

and 

O k = d W  k + C ~ W ' / x W  ~, l~<i ,k~<4,  1~<s~<6 (195) 

The 2-forms (O~11 ~< r ~< 6} are the curvature 2-forms associated with the 
local action of L(4,R),  while ( |  ~<4} are the curvature 2-forms 
associated with the semidirect product action of T(4), as evidenced by the 
coupling terms C ~ W  s A W ~. Now, ((Gs)) is a nonsingular 6-by-6 matrix and 
hence applying S* shows that we have the G10-invariant scalar 

a = O~.h'khfl|  (196) 

where 20  r = Oi)dx' /x dxL Here, we have used the fact that Gx0 is a group 
of isometries of M 4 and hence 'h u = h u. 

An inspection of (196) shows that a is independent of the curvature 
coefficients { O h ) associated with T(4). This is a direct consequence of the 
fact that Ga0 is not a semisimple group and has been a source of certain 
difficulties in the past; it is necessary that we go back to A ( ~ )  in order to 
determine other G~0-invariant quantities. This problem has been solved for 
SO(3)t> T(3) in Kadi6 and Edelen (1983) and suggests a possible resolution 
for G1o (see Appendix). Another possibility is afforded by the scalar 
invariants that can be formed from the Riemannian curvature tensor based 
on the metric tensor gij = T~khktT/�9 Such invariants have the right proper- 
ties, for (181) shows that gij = h,j for Ga0-constant sections of ~ (W ~= 0) 
and the Riemannian curvature tensor formed from h u vanishes throughout 
M 4. In any event, even after further invariants are found, there is still the 
question of selecting an appropriate representation for S*'0. We leave this 
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aspect of the problem for a future communication and simply take 

,//r (L/.t) + S* r/= ( L ( - g ) l / 2 + f ( a  . . . .  ))p, = Lp, (197) 

with 

L = L( xJ, q ~, yi ~, W/, IV~', 6)]k, ofk ) (198) 

in conformity with (129). The field equations for the gauge theory of the 
Poincar6 group then follow directly from the results given in Section 8: 

�9 *Oi(t/L~)=~*{L~+t{L'~Wj"O~s (199) 

tb c dG*+C~,.W A G~' = �89 1~<i~<4 
(200) 

dG* + C2.W~A G~ = }J,*, 1 ~ r <~ 6 

The reader should compare the results of this section with those reported in 
Kikkawa et al. (1983) and the references cited therein. 

10. OBSERVATIONS 

The theory of operator-valued connections has been shown to lead to a 
simple and direct gauge theory construction for any Lie group Gr of 
symmetries of a variational principle. The symmetries themselves can be of 
a general nature. All that is required is that G, act on the underlying 
kinematic space K as a Lie group of point transformations. The action of 6:, 
can thus be quite nonlinear, as opposed to previous theories in which G, has 
been required to act as a subgroup of the general linear group on the vector 
space of states. Further, G, is permitted to act on both the space of states 
and on the underlying space-time manifold in an indiscriminate manner. An 
explicit example of this has been given where Gr is the Poincard group and 
the action functional is Poincard invariant. 

The generality afforded by the theory of operator-valued connections 
opens new and possibly fundamental areas of study. An obvious candidate 
is the construction of gauge theories in which G, contains the 15-parameter 
conformal group on flat space-time M 4. The conformal group is the 
fundamental group of electrodynamics on space-time so it is naturally 
associated with the action of the electromagnetic field. In addition, the 
gauge fields that compensate for local deformations of the fundamental 
form, s =ruh~j, provide natural dynamic scale variables that would 
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appear to have fundamental significance. The five integrability conditions 
(164) in addition to those that arise from P~0 (Gr-covariant conservation 
laws) then assume particular significance. 

It should be pointed out that a fundamental revision of the theory can 
be made whereby both the compensating fields { W"} and the group 
parameter fields S*u  a= s"(x  j) are retained. We should then be able to 
account for any particular gauge field by actually getting hold of the family 
of specific transformations that map from a G;constant section to a 
space-time-dependent section of group space. This would be of particular 
importance in the case of the Poincar6 group. 

APPENDIX. MATRIX REPRESENTATION OF THE 
POINCARE GROUP AND INVARIANTS 

Let V 5 be a five-dimensional vector space and consider the affine set of 
vectors 

i=[Xl ,X2,X3,X4,1]  T (A1) 

where x = [x l, x 2, x 3, x4] T is any position vector in M 4. If L is a 4-by-4 
Lorentz transformation matrix and t = [t ~, t2, t 3, t4] T, then the Poincar6 
group may be realized as a matrix subgroup of GL(5) consisting of all 
matrices of the form 

that is, 

L t) (A2) M= [0] 

Let {Lrll~<r~<6} be a basis for the matrix Lie algebra of L(4,R), let 
{eill ~< i ~< 4} generate T(4), and consider 

o/ ,14, 
where F may be viewed as the gauge connection for L(4,R). It then follows 
that (A1) and (A4) serve to reproduce (176) through 
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In like manner, if we set 

/ [o1 [o1 0 

Edelen 

(A6) 

and note that D*D*~ means S*(DD~), then 

D* D*~, = 0 k  (A7) 

We next note that the transformation laws for I" and O are 

'~" = M I ' M - '  - d M  M -a ,  ' 0  = M 0 M  -~ ( A 8 )  

Use of (A2), (A4), and (A6) thus give 

' F =  L F L - I -  d L L - 1  

't~ = Lto - d t -  (LFL -1 - d L  L-X)t 

'O = L O L -  l 

'f~ = Lf~ - L O L -  at (A9) 

The result ' 0  = L O L -  1 leads directly to the invariant given by (196). On the 
other hand, the occurrence of the translation, t, in the last of (A9) shows 
that we may not construct an invariant from fL 

The quantity 

5 =  [ZT, 0] r = 0~, = [(Ox + ~ ) r , 0 ]  T ( a l 0 )  

has the evaluation D*D*x,  by (A7), and is thus the Cartan torsion matrix 
for the differential system constructed from the soldering matrix D*~. 
Further, (A3), the second of (AS), and (Al l )  give 

'~- = ' 0 ' ~  = M O M - ~ M ~  = M ( ~  = [LZ,O] T (Al l )  

Accordingly, since LrhL = h, h = ((hi j)), 

/~ = X r h |  y. (A12) 

is Poincar6 invariant. Thus, if we write [see (A6)] 

Z ' =  ~ ZjkdxJ /~ dxk=| j +| (A13) 
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we obtain the scalar invariant 

~ ~ i  la s~J l, kml,,ln 
~-.Jkl,~ij~..Jmnl* i~ 

This invariant contains the T(4) curvature terms O i. 
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